Globulos rojos

Globulos rojos

sábado, 2 de abril de 2011

Estructura de la Hemoglobina *

La hemoglobina es un tetrámero compuesto por moléculas de globina 4; 2 globinas alfa y beta 2 globinas. La cadena de globina alfa se compone de 141 aminoácidos y la cadena de globina beta está compuesta por 146 aminoácidos. Ambos alfa y beta globina proteínas comparten estructuras similares secundario y terciario, cada uno con 8 segmentos helicoidales (con la etiqueta hélice AG). Cada cadena de globina también contiene una molécula de hemo. La molécula de hemo se compone de un anillo de porfirina, que consta de 4 moléculas en función del ciclo pirrol unidos entre sí, y un ion hierro ligando unido en el centro. La molécula de hemo se encuentra entre E y F hélice hélice de la proteína globina. Las subunidades alfa y beta de las cadenas de globina existir en dos dímeros de las cuales se pegan fuertemente. El oxígeno se une a los iones de hierro con fuerza, y si dos moléculas hemo se unen en presencia de oxígeno, los átomos de hierro se oxida y forma irreversible enlazar con el oxígeno. Esta unión irreversible no sería de uso en la molécula de hemoglobina por el oxígeno debe ser liberado en los tejidos. La cadena de globina impide que esta unión irreversible por plegado de la proteína alrededor de la molécula del heme, la creación de un bolsillo para aislar la molécula de hemo. de otras moléculas hemo. Por lo tanto, las moléculas de globina permitir que el átomo de hierro para formar enlaces sueltos con el oxígeno, y por lo tanto, la capacidad de unirse al oxígeno y luego la liberación en los tejidos sin llegar a ser permanente en el proceso de oxidación.










Estructura Primaria:

Las hemoglobinas de todos los mamíferos tienen un peso molecular aproximado de 65.000 y en esencia son tetrámeros, que constan de 4 cadenas péptidas, cada una de las cuales esta unida a un grupo hem. Las moléculas de hemoglobina se forman por combinación de dos subunidades de una cadena peptídica llamada a y dos de b donde las cadenas polipeptídicas están constituidas por eslabones de Aminoácidoaminoácidos (AA) denominados residuos; conteniendo 141 residuos la cadena a y 146 la cadena b. Todo ser humano es capaz de sintetizar (genéticamente) e introducir en la hemoglobina cuatro cadenas polipéptidas designadas a , b , g y d. Con escasas excepciones las moléculas de HB se forman por la combinación de dos cadenas a con dos g o d. La HB de una persona adulta normal se designa por HB A = a 2A b 2A y de igual forma, la HB fetal es HB A = a 2Ag 2F Las cadenas b , g , d contienen todas ellas 146 unidades que se asemejan mucho entre sí en la secuencia de AA, hay solo 39 residuos de AA diferentes entre las cadenas b y g y solo 10 entre b y d.


Estructura Secundaria:

La orientación de las cadenas polipeptídicas puede ser completamente extendida ( que no es muy común ), por lo que es mejor clasificarlas como: Alfahélice. Hoja plegada. Al azar. El porcentaje de contenido de alfahélice en las proteínas globulares es bastante variable (0 – 90%), en el caso de la HB su contenido es de un 75%. Existen dos factores (o mas bien aminoácidos que pertenezcan a la cadena polipeptídica) que pueden interrumpir la orientación helicoidal: Presencia de prolina la cual provoca una torsión de la cadena. La presencia de fuerzas electrostáticas localizadas de repulsión debido a un conjunto de grupos –R cargados positivamente (lisina y argina), o negativamente (ac- glutámico y aspártico). En la cadena polipeptídica seleccionada (b 36-59), desde el AA 36 al 42 se encuentra una estructura que se forma al enrollarse helicoidalmente sobre si mismo, se debe a la formación de enlaces de hidrógeno entre el –C = O de un AA y el –NH. Del AA 43 al 5, se forma una estructura de hoja plegada, la cual se identifica por que no forma una hélice sino una cadena en forma de zigzag. Del AA 53 al 53 encontramos una estructura helicoidal.


Estruntura terciaria:

La HB es casi esférica (globular), con un diámetro de 55 A, las cuatro cadenas están empaquetadas conjuntamente en disposición tetraédrica (ver anexo 2b). Los grupos Hemo, están localizados en unas oquedades cercanas al exterior de la molécula, uno en cada subunidad. Los 4 lugares de unión del oxígeno están separados, la distancia entre los dos átomos de Fe más próximos es de 25 A e inclinados con ángulos diferentes. Cada grupo hemo se encuentra enterrado parcialmente rodeado por grupos -R Hidrofóbicos. Este se halla unido a la cadena polipeptídica mediante un enlace coordinado del átomo de Fe con la HIS (histidina), mientras el otro enlace de coordinación del Fe se halla disponible para el transporte del oxigeno. Existe una gran cantidad de residuos hidrofílicos en la superficie de la cadena, pero el centro de la a - hélice es especialmente hidrofóbico. Como en todas las proteínas existe una naturaleza anfipática, la cual hace que existan diferentes regiones que presenten mayor o menor polaridad, esto depende de los tipos de residuos que compongan la región. También existen fuerzas Vander Walls, aquellos que poseen un componente electrostático que se presentan cuando dos regiones apolares se encuentran lo suficientemente cerca para que se forme la fuerza entre los dipolos instantáneos o débiles (determinados residuos) y entre ellos producen un campo eléctrico, igualmente, las interacciones electrostáticas o puentes salinos, que se presentan cuando algunos iones se encuentran cercanos a la proteína y modifican el campo eléctrico, son importantes ya que estos dan estabilidad a la forma de la HB. Por último en la estructura de la HB no hay enlaces de tipo S-S, ya que los residuos Cys (cistina), no son comunes en la cadena a aunque en la b si hay; pero no es posible que se establezcan este tipo de enlaces entre las cadenas a y b de las globinas. Cada cadena a está en contacto con las cadenas b , sin embargo, existen pocas interacciones entre las dos cadenas a o entre las dos cadenas b entre sí.


Estructura Cuaternaria:

La Estructura cuaternaria modula las actividades biológicas de las proteínas. Tanto las proteínas transportadores (hemoglobina), como las enzimáticas (A,T, C-ASA) pierden buena acción específica al fraccionarla en subunidades. La proteína íntegra al realizar la catálisis propia, admite una regulación en su actividad es decir puede frenarse o acelerarse, en respuesta a metabolitos concretos que pueden ser el propio sustrato o distintos modulars alostericos, las propiedades alostéricas de la HB se producen por la interaccion de las subunidades diferentes. La unidad funcional de la HB es un tetramero que consta de dos clases de cadenas polipeptídicas. La hemoglobina está clasificada dentro del grupo de las proteínas conjugadas ya que además de tener o poseer aminoácidos contiene además una proporción significativa del grupo prostético hem pues cada cadena del tetrámero está asociada a uno de estos. En el caso de la estructura de HB se presenta el tercer caso que es el de los monómeros defunción análoga pero de estructura diferente de tal manera que no se pueden sustituir unos por otros sin ciertas restricciones. La asociación de diferentes tipos de globinas origina las diferentes especies tetraméricas de la HB siendo HBAa 2b 2, HBA2a 2d 2, HBFa 2g 2. Se conocen como hemoglobinas anormales como la HBb 4 o la HBBartz que es la d 4 con cuatro monómeros idénticos pero son funcionalmente inferiores a las antes mencionadas. En este caso no son posibles estructuras intermedias con estructura impar de monómeros de cada clase, ejemplo ( a 3b ). Cuando se produce la oxigenación de la desoxihemoglobina, no hay variación alguna de la estructura terciaria; pero cuando se une el O2 a los grupos hemo de esta, las subunidades a , b que permanecen rígidas, cambian ligeramente de posición, aproximándose entre sí lo que presenta un cambio de la estructura cuaternaria. Existen dos clases de regiones de contacto entre las cadenas a y b . Uno de los tipos de contacto es (a 1b 2) que es idéntico al (a 2b 1); el otro tipo es (a 1b 1) y (a 2b 2). La estructura cuaternaria de la desoxiHB se denomina forma T tensa o tirante; la oxiHB forma R relajado. El átomo de hierro arrastra con él la histidina proximal cuando se introduce en el plano de la porfirina. Este movimiento de la histidina F8 provoca una alteración de la estructura hélice F y en los acodamientos EF y FG. Estos cambios conformacionales se transmiten a las interfases de las subunidades ocasionando la ruptura de los enlaces salinos intercatenarios lo que provoca que la proteína cambie a la forma R. Esta estructura cuaternaria le confiere propiedades adicionales extraordinarias (ausentes en la hemoglobina) que la adaptan a sus papeles biológicos únicos y permiten una regulación precisa de sus propiedades. Las fuerzas que mantienen unidas las cadenas peptídicas para dar una estructura cuaternaria suelen ser de tipo fisicoquímico (asociación hidrofóbica), y el ensamblaje de monómeros se realiza expontáneamente, ocurre así la ordenación cuaternaria adoptada, representa un mínimo de energía libre para la molécula.

No hay comentarios:

Publicar un comentario